Copied to
clipboard

G = C9×C42⋊C2order 288 = 25·32

Direct product of C9 and C42⋊C2

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C9×C42⋊C2, C424C18, C4⋊C46C18, (C4×C36)⋊2C2, (C2×C4)⋊4C36, (C2×C36)⋊9C4, (C4×C12).5C6, C36.46(C2×C4), C4.12(C2×C36), C12.53(C2×C12), (C2×C12).21C12, C22⋊C4.3C18, (C22×C4).6C18, C2.3(C22×C36), C22.5(C2×C36), C18.38(C4○D4), (C2×C18).72C23, C23.11(C2×C18), C6.31(C22×C12), (C22×C12).27C6, C18.31(C22×C4), (C22×C36).14C2, (C2×C36).135C22, C22.5(C22×C18), (C22×C18).25C22, (C9×C4⋊C4)⋊15C2, C2.1(C9×C4○D4), (C3×C4⋊C4).24C6, (C2×C4).8(C2×C18), C6.38(C3×C4○D4), C3.(C3×C42⋊C2), (C2×C6).27(C2×C12), (C2×C18).22(C2×C4), (C3×C42⋊C2).C3, (C9×C22⋊C4).6C2, (C2×C12).169(C2×C6), (C3×C22⋊C4).14C6, (C22×C6).43(C2×C6), (C2×C6).77(C22×C6), SmallGroup(288,167)

Series: Derived Chief Lower central Upper central

C1C2 — C9×C42⋊C2
C1C3C6C2×C6C2×C18C2×C36C9×C22⋊C4 — C9×C42⋊C2
C1C2 — C9×C42⋊C2
C1C2×C36 — C9×C42⋊C2

Generators and relations for C9×C42⋊C2
 G = < a,b,c,d | a9=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, cd=dc >

Subgroups: 138 in 114 conjugacy classes, 90 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C23, C9, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C18, C18, C18, C2×C12, C2×C12, C22×C6, C42⋊C2, C36, C36, C2×C18, C2×C18, C2×C18, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C2×C36, C2×C36, C22×C18, C3×C42⋊C2, C4×C36, C9×C22⋊C4, C9×C4⋊C4, C22×C36, C9×C42⋊C2
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C9, C12, C2×C6, C22×C4, C4○D4, C18, C2×C12, C22×C6, C42⋊C2, C36, C2×C18, C22×C12, C3×C4○D4, C2×C36, C22×C18, C3×C42⋊C2, C22×C36, C9×C4○D4, C9×C42⋊C2

Smallest permutation representation of C9×C42⋊C2
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 106 34 109)(2 107 35 110)(3 108 36 111)(4 100 28 112)(5 101 29 113)(6 102 30 114)(7 103 31 115)(8 104 32 116)(9 105 33 117)(10 79 139 67)(11 80 140 68)(12 81 141 69)(13 73 142 70)(14 74 143 71)(15 75 144 72)(16 76 136 64)(17 77 137 65)(18 78 138 66)(19 84 131 59)(20 85 132 60)(21 86 133 61)(22 87 134 62)(23 88 135 63)(24 89 127 55)(25 90 128 56)(26 82 129 57)(27 83 130 58)(37 124 52 99)(38 125 53 91)(39 126 54 92)(40 118 46 93)(41 119 47 94)(42 120 48 95)(43 121 49 96)(44 122 50 97)(45 123 51 98)
(1 57 40 73)(2 58 41 74)(3 59 42 75)(4 60 43 76)(5 61 44 77)(6 62 45 78)(7 63 37 79)(8 55 38 80)(9 56 39 81)(10 115 135 99)(11 116 127 91)(12 117 128 92)(13 109 129 93)(14 110 130 94)(15 111 131 95)(16 112 132 96)(17 113 133 97)(18 114 134 98)(19 120 144 108)(20 121 136 100)(21 122 137 101)(22 123 138 102)(23 124 139 103)(24 125 140 104)(25 126 141 105)(26 118 142 106)(27 119 143 107)(28 85 49 64)(29 86 50 65)(30 87 51 66)(31 88 52 67)(32 89 53 68)(33 90 54 69)(34 82 46 70)(35 83 47 71)(36 84 48 72)
(10 135)(11 127)(12 128)(13 129)(14 130)(15 131)(16 132)(17 133)(18 134)(19 144)(20 136)(21 137)(22 138)(23 139)(24 140)(25 141)(26 142)(27 143)(91 116)(92 117)(93 109)(94 110)(95 111)(96 112)(97 113)(98 114)(99 115)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 118)(107 119)(108 120)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,106,34,109)(2,107,35,110)(3,108,36,111)(4,100,28,112)(5,101,29,113)(6,102,30,114)(7,103,31,115)(8,104,32,116)(9,105,33,117)(10,79,139,67)(11,80,140,68)(12,81,141,69)(13,73,142,70)(14,74,143,71)(15,75,144,72)(16,76,136,64)(17,77,137,65)(18,78,138,66)(19,84,131,59)(20,85,132,60)(21,86,133,61)(22,87,134,62)(23,88,135,63)(24,89,127,55)(25,90,128,56)(26,82,129,57)(27,83,130,58)(37,124,52,99)(38,125,53,91)(39,126,54,92)(40,118,46,93)(41,119,47,94)(42,120,48,95)(43,121,49,96)(44,122,50,97)(45,123,51,98), (1,57,40,73)(2,58,41,74)(3,59,42,75)(4,60,43,76)(5,61,44,77)(6,62,45,78)(7,63,37,79)(8,55,38,80)(9,56,39,81)(10,115,135,99)(11,116,127,91)(12,117,128,92)(13,109,129,93)(14,110,130,94)(15,111,131,95)(16,112,132,96)(17,113,133,97)(18,114,134,98)(19,120,144,108)(20,121,136,100)(21,122,137,101)(22,123,138,102)(23,124,139,103)(24,125,140,104)(25,126,141,105)(26,118,142,106)(27,119,143,107)(28,85,49,64)(29,86,50,65)(30,87,51,66)(31,88,52,67)(32,89,53,68)(33,90,54,69)(34,82,46,70)(35,83,47,71)(36,84,48,72), (10,135)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,144)(20,136)(21,137)(22,138)(23,139)(24,140)(25,141)(26,142)(27,143)(91,116)(92,117)(93,109)(94,110)(95,111)(96,112)(97,113)(98,114)(99,115)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,118)(107,119)(108,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,106,34,109)(2,107,35,110)(3,108,36,111)(4,100,28,112)(5,101,29,113)(6,102,30,114)(7,103,31,115)(8,104,32,116)(9,105,33,117)(10,79,139,67)(11,80,140,68)(12,81,141,69)(13,73,142,70)(14,74,143,71)(15,75,144,72)(16,76,136,64)(17,77,137,65)(18,78,138,66)(19,84,131,59)(20,85,132,60)(21,86,133,61)(22,87,134,62)(23,88,135,63)(24,89,127,55)(25,90,128,56)(26,82,129,57)(27,83,130,58)(37,124,52,99)(38,125,53,91)(39,126,54,92)(40,118,46,93)(41,119,47,94)(42,120,48,95)(43,121,49,96)(44,122,50,97)(45,123,51,98), (1,57,40,73)(2,58,41,74)(3,59,42,75)(4,60,43,76)(5,61,44,77)(6,62,45,78)(7,63,37,79)(8,55,38,80)(9,56,39,81)(10,115,135,99)(11,116,127,91)(12,117,128,92)(13,109,129,93)(14,110,130,94)(15,111,131,95)(16,112,132,96)(17,113,133,97)(18,114,134,98)(19,120,144,108)(20,121,136,100)(21,122,137,101)(22,123,138,102)(23,124,139,103)(24,125,140,104)(25,126,141,105)(26,118,142,106)(27,119,143,107)(28,85,49,64)(29,86,50,65)(30,87,51,66)(31,88,52,67)(32,89,53,68)(33,90,54,69)(34,82,46,70)(35,83,47,71)(36,84,48,72), (10,135)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,144)(20,136)(21,137)(22,138)(23,139)(24,140)(25,141)(26,142)(27,143)(91,116)(92,117)(93,109)(94,110)(95,111)(96,112)(97,113)(98,114)(99,115)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,118)(107,119)(108,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,106,34,109),(2,107,35,110),(3,108,36,111),(4,100,28,112),(5,101,29,113),(6,102,30,114),(7,103,31,115),(8,104,32,116),(9,105,33,117),(10,79,139,67),(11,80,140,68),(12,81,141,69),(13,73,142,70),(14,74,143,71),(15,75,144,72),(16,76,136,64),(17,77,137,65),(18,78,138,66),(19,84,131,59),(20,85,132,60),(21,86,133,61),(22,87,134,62),(23,88,135,63),(24,89,127,55),(25,90,128,56),(26,82,129,57),(27,83,130,58),(37,124,52,99),(38,125,53,91),(39,126,54,92),(40,118,46,93),(41,119,47,94),(42,120,48,95),(43,121,49,96),(44,122,50,97),(45,123,51,98)], [(1,57,40,73),(2,58,41,74),(3,59,42,75),(4,60,43,76),(5,61,44,77),(6,62,45,78),(7,63,37,79),(8,55,38,80),(9,56,39,81),(10,115,135,99),(11,116,127,91),(12,117,128,92),(13,109,129,93),(14,110,130,94),(15,111,131,95),(16,112,132,96),(17,113,133,97),(18,114,134,98),(19,120,144,108),(20,121,136,100),(21,122,137,101),(22,123,138,102),(23,124,139,103),(24,125,140,104),(25,126,141,105),(26,118,142,106),(27,119,143,107),(28,85,49,64),(29,86,50,65),(30,87,51,66),(31,88,52,67),(32,89,53,68),(33,90,54,69),(34,82,46,70),(35,83,47,71),(36,84,48,72)], [(10,135),(11,127),(12,128),(13,129),(14,130),(15,131),(16,132),(17,133),(18,134),(19,144),(20,136),(21,137),(22,138),(23,139),(24,140),(25,141),(26,142),(27,143),(91,116),(92,117),(93,109),(94,110),(95,111),(96,112),(97,113),(98,114),(99,115),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,118),(107,119),(108,120)]])

180 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E···4N6A···6F6G6H6I6J9A···9F12A···12H12I···12AB18A···18R18S···18AD36A···36X36Y···36CF
order1222223344444···46···666669···912···1212···1218···1818···1836···3636···36
size1111221111112···21···122221···11···12···21···12···21···12···2

180 irreducible representations

dim111111111111111111222
type+++++
imageC1C2C2C2C2C3C4C6C6C6C6C9C12C18C18C18C18C36C4○D4C3×C4○D4C9×C4○D4
kernelC9×C42⋊C2C4×C36C9×C22⋊C4C9×C4⋊C4C22×C36C3×C42⋊C2C2×C36C4×C12C3×C22⋊C4C3×C4⋊C4C22×C12C42⋊C2C2×C12C42C22⋊C4C4⋊C4C22×C4C2×C4C18C6C2
# reps122212844426161212126484824

Matrix representation of C9×C42⋊C2 in GL4(𝔽37) generated by

33000
01000
0010
0001
,
36000
0600
0021
003235
,
1000
0100
00310
00031
,
36000
03600
0010
003336
G:=sub<GL(4,GF(37))| [33,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[36,0,0,0,0,6,0,0,0,0,2,32,0,0,1,35],[1,0,0,0,0,1,0,0,0,0,31,0,0,0,0,31],[36,0,0,0,0,36,0,0,0,0,1,33,0,0,0,36] >;

C9×C42⋊C2 in GAP, Magma, Sage, TeX

C_9\times C_4^2\rtimes C_2
% in TeX

G:=Group("C9xC4^2:C2");
// GroupNames label

G:=SmallGroup(288,167);
// by ID

G=gap.SmallGroup(288,167);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,365,142,360]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽